
Information within sight

Bluetooth API - Documentation

Last revision : 01/02/2024

This document cannot be shared or reproduced without authorization from the
authors, the company Get Your Way SRL.

Table of contents

Bluetooth API 2
Introduction 2
Prerequisites 2
Connection 2
Communication 3
Display 3

API Features 5
Principle 5
Sending data 5
Examples 5
Turning on the screen 6
Resetting the screen 6
Displaying text 6
Displaying icons 8
Drawing rectangles 10
Drawing spinners 11
Set contrast and brightness 13
Lock screen orientation 13
Enable or disable backlight 14
Control codes 14

Get Your Way 16
Company Description 16
Contact 16

1

Bluetooth API

Introduction
The Bluetooth API is a programming interface that allows developers to establish a

wireless connection between the aRdent smart glasses and other Bluetooth-enabled
devices such as a computer, smartphone, or portable keypad. This API provides a simple
and efficient way to transfer data between these devices, allowing computing power and
software functionality to be offloaded to an external device.

Using the Bluetooth API, developers can create apps that communicate with the
aRdent smart glasses, providing users with relevant information while they work. Data
can be transmitted in textual or visual form, depending on the intended application.

This document describes in detail the various functions and methods of the
Bluetooth API, along with instructions for using them in any Bluetooth-enabled
programming language.

Prerequisites
Before you start using the Bluetooth API for aRdent smart glasses, you must ensure

that you have the following prerequisites:

● A Bluetooth-enabled device that supports Bluetooth version 4.0 or later.
● An operating system compatible with Bluetooth 4.0 or later (for example,

Windows 8 or later, macOS 10.10 or later, Android 4.3 or later, iOS 7 or later).
● A basic understanding of programming and Bluetooth communication concepts.

If you need help obtaining any of these prerequisites, please consult the
documentation for your device or operating system, or contact your device vendor's
technical support.

Connection
The aRdent smart glasses only work in peripheral mode, which means they cannot

initiate a Bluetooth connection themselves. It is therefore up to your device to detect the
glasses and initiate the connection. You don't need to pair them to establish a
connection, which means you can connect them even if they've never been connected
to your device before.

To establish a connection with the aRdent glasses, you must use the MAC address
of the glasses. To enable two-way communication between the two devices, the
connection must be established using the Generic Attribute Profile (GATT) Bluetooth Low
Energy (BLE). Using this profile, you can exchange data with aRdent glasses.

The aRdent glasses have a public Bluetooth name which is GYW aRdent. However,
on some devices they may appear under the generic name bluenrg! Bluetooth BLE.
This can be useful to know if you are unable to detect glasses with their public name.

2

Communication
Bluetooth communication between your device and aRdent smart glasses is via the

Bluetooth Low Energy (BLE) GATT (Generic Attribute Profile). BLE is a lighter version of
classic Bluetooth, designed for applications requiring low power consumption, such as
wearable devices.

GATT is a profile specification for BLE communications, which defines a hierarchical
data structure for services and characteristics. Services are collections of related
characteristics that can be used to perform a particular function, while characteristics are
individual data objects that contain specific information. Figure 2 is a diagram of a profile
meeting this specification.

Figure 2 : Profil GATT

To communicate with aRdent smart glasses, your device must establish a BLE
GATT connection with the aRdent device. Once connected, your device can query the
services and characteristics available on aRdent glasses to retrieve information, update it,
or send commands.

Display
Bluetooth communication with aRdent smart glasses for information display is

based on a single service containing two distinct characteristics. The first one is
dedicated to sending data to the glasses, while the second is used to control how this
data is used and displayed.

For example, to send text to display on the glasses, you must write the text on the
characteristic linked to the data. Then, you must send a control instruction to the
characteristic dedicated to the control to indicate that text must be displayed and

3

describe how it must be displayed. This principle is used for all display features available
with aRdent smart glasses.

API Features

Principle
The display features on aRdent smart glasses are managed by a single service

called Display Service, which contains two characteristics: the Data Characteristic and the
Control Characteristic. Table 1 below summarizes their properties.

UUID

Display
Service

9f3443f3-5149-4d53-9b92-35def7b82e51

Control
Characteristic

9f3443f3-5149-4d53-9b92-35def7b82e52

Data
Characteristic

9f3443f3-5149-4d53-9b92-35def7b82e53

Table 1 : Service properties and characteristics for display

To perform a display operation on the screen, it is necessary to write data on the
Data Characteristic, then describe what to do with this data on the Control Characteristic.
However, some operations, such as turning on or resetting the screen, do not require
data and it is then possible to omit sending data on the Data Characteristic.

Sending data
Sending data is an essential step to display information on smart glasses. In

Bluetooth Low Energy (BLE), the maximum size of a data packet is 20 bytes. This is why it
is necessary to divide the data you wish to send into blocks of 20 bytes.

In terms of characteristics, the Control Characteristic does not accept more than 20
bytes per instruction. On the other hand, the Data Characteristic can accept up to 4096
bytes of data. However, it is necessary to transmit them in blocks of 20 bytes or less.

It is important to note that as long as nothing is sent to the Control Characteristic,
new data transmitted on the Data Characteristic is added to the end of that previously
sent. An instruction on the Control Characteristic always resets this data buffer.

4

Examples
The examples provided in this section are made in Python with the bleak library.

This library is based on a BleakClient which controls the connection and
communication between BLE devices.

Example 1 shows how to send the value 0x01 (1 in hexadecimal) to the Control
Characteristic.

Turning on the screen
Before you can display information on the glasses screen, it is necessary to turn on

this screen manually. To do this, simply send the control code 0x01 to the Control
Characteristic. No data is needed for this operation, so the Data Characteristic is not used.

It is generally recommended to wait 500 milliseconds after sending the command
to allow time for the screen to light up correctly.

Example 1 corresponds to the Python code used to turn on the screen.

async with BleakClient(MAC_ADDRESS) as client:

Write [0x01] on the Control characteristic

await client.write_gatt_char(

control_characteristic,

bytearray([0x01]),

)

Example 1 : Python code to turn on the screen

Resetting the screen
The smart glasses screen can be reset using the control code 0x05 and by

sending an RGBA8888 color on the data characteristic.

This method removes everything and clears the screen with a color. For clearing
just a part of the screen, rectangles can be used instead.

Example 2 shows how to fill the screen in white.

async with BleakClient(MAC_ADDRESS) as client:

Clear Display and set a white screen

await client.write_gatt_char(

control_characteristic,

bytearray([0x05, 0xFF, 0xFF, 0xFF, 0xFF]),

)

Example 2 : Python code for clearing the screen in white

5

https://bleak.readthedocs.io/en/latest/
https://docs.google.com/document/d/1PpiaHAzEIoboYFKbhGP-W-tEZAz5wNaqPmn4BSOkwa0/edit?pli=1#bookmark=id.nfdwsl3dwgge
https://docs.google.com/document/d/1PpiaHAzEIoboYFKbhGP-W-tEZAz5wNaqPmn4BSOkwa0/edit?pli=1#bookmark=id.lh86ukkfb5vz

Displaying text
To display text on the screen, you must first write the text you want to display on

the Data Characteristic encoded in UTF-8. Once all text is sent, the control instruction can
be written to the Control Characteristic.

This instruction is composed of the following attributes:

1 byte 2 bytes 2 bytes 5 bytes 1 byte 4 bytes

0x03 Horizontal
position

Vertical
position

Font name Font size Color

● Positions are expressed in pixels from the left for horizontal, and from the top for
vertical. These positions are signed and encoded in Little Endian.

● Font name can be one of the following:

Font name

Roboto Mono Regular robmn

Roboto Mono Bold robmb

Roboto Mono Italic robmi

Roboto Mono Bold Italic robme

● Font size must be a non-null single byte positive number.

● Color is an RGBA8888 value.

Newlines are not supported. The management of lines of text is left to the
application. This means that to send text on two lines, you must necessarily perform this
display operation twice.

The font used is always Roboto Mono. The character size at font size 18 is 10 x 25
px. The character size is always directly proportional to the font size. If you double the
font size, you also double the character size in each dimension.

Example 3 shows how to do this in Python.

async with BleakClient(MAC_ADDRESS) as client:

Write text on Data Characteristic

text = "Hello World"

data = bytes(text, 'utf-8')

Split data into chunks of 20 bytes

6

https://docs.google.com/document/d/1PpiaHAzEIoboYFKbhGP-W-tEZAz5wNaqPmn4BSOkwa0/edit?pli=1#bookmark=id.wdtmxranu9ug

i = 0

while i < len(data):

await client.write_gatt_char(

data_characteristic

data[i:i + 20],

)

i += 20

Wait for the data to be treated

time.sleep(0.1)

Text parameters

x = 100

y = 200

font_name = "robmn"

font_size = 30

color = 0x000000ff

Send control

await client.write_gatt_char(

control_characteristic,

bytearray([0x03]) +

x.to_bytes(2, 'little', signed=True) +

y.to_bytes(2, 'little', signed=True) +

font_name.encode(“utf-8”) +

font_size.to_bytes(1, "little") +

color.to_bytes(4, “big”),

)

Example 3 : Python code to display “Hello World” on screen in (100, 200)

Displaying icons
The smart glasses also have a series of SVG icons that can be displayed on the

screen. To do this, the first step is to write the name of the icon on the Data Characteristic.
Table 3 lists all the icons available on the device. Predefined icon names are always less
than 20 bytes long which allows this data to be sent in one go, without needing to divide
it into blocks of 20 bytes or less. Once the file name is sent, it is possible to send a control
instruction on the Control Characteristic to display the icon.

This instruction is composed of the following attributes:

1 byte 2 bytes 2 bytes 4 bytes 1 bytes

0x02 Horizontal
position

Vertical
position

Color Scale

7

● Positions are expressed in the same way as for text.

● Color is an RGBA8888 value.

● Scale is a multiplication factor that will make the icon larger or smaller. A scale of
1 will always display a 48x48 icon. It can range from 0.01 to 13.7, but it has to be
converted into a single byte, which Example 4 shows how to do.

build nfc key_0

camera person key_1

chat prev key_2

check rename key_3

cloud_ba
ckup right key_4

cloud_do
ne settings key_5

done unchec
k key_6

down up key_7

edit warning key_8

file wifi_off key_9

folder wifi key_A

gyw key_B

8

help key_C

info key_D

left key_star

location key_#

Table 3 : Available icons

Example 4 shows how to display the icon “down”.

async with BleakClient(MAC_ADDRESS) as client:

Write icon filename on Data Characteristic

icon = "down.svg"

await client.write_gatt_char(

data_characteristic,

bytes(icon, 'utf-8'),

)

Wait for the data to be treated

time.sleep(0.1)

Position of the icon element

x = 50

y = 100

color = 0x000000ff

scale = 2.5

def clamp(n, smallest, largest):

"""Clamp a value between two bounds."""

return max(smallest, min(n, largest))

def encode_scale(scale):

"""Encode the scale into a single byte."""

scale = clamp(scale, 0.01, 13.7)

if scale >= 0:

byte = round((scale - 1.0) * 10.0)

else:

byte = round(-scale * 100.0)

return byte.to_bytes(1, “little”, signed=True)

9

Send control

await client.write_gatt_char(

control_characteristic,

bytearray([0x02]) +

x.to_bytes(2, 'little', signed=True) +

y.to_bytes(2, 'little', signed=True) +

encode_scale(scale) +

color.to_bytes(4, “big”)

)

Example 4 : Python code to display a down arrow at (50, 100)

Displaying custom images is also possible by sending the filename of your image
copied on the glasses instead of sending a predefined icon name. Both SVG and PNG
formats are supported. The default behavior is to fill the non-transparent parts of the
image with the color supplied in the command, but if it’s desirable to preserve the
original image colors, pass a 32-bit 0 value as color (0x00, 0x00, 0x00, 0x00).

Drawing rectangles
Rectangles can be useful for drawing bullet points, separation lines, or clearing a

part of the screen.

Drawing a colored rectangle is achieved by sending the following control
instruction on the Control Characteristic:

1 byte 2 bytes 2 bytes 2 bytes 2 bytes 4 bytes

0x0C Horizontal
position

Vertical
position

Width Height Color

● Positions are expressed in the same way as for text.

● Width and height are both unsigned positive integers encoded on 2 bytes.

● Color is an RGBA8888 value.

If you set the color to the value 0, the rectangle will have the same color as the
background, so you can use it to clear a part of the screen.

Example 5 shows how to draw a rectangle.

async with BleakClient(MAC_ADDRESS) as client:

x = 50

y = 100

width = 210

height = 70

10

color = 0x0000ffff

Send control

await client.write_gatt_char(

control_characteristic,

bytearray([0x0C]) +

x.to_bytes(2, 'little', signed=True) +

y.to_bytes(2, 'little', signed=True) +

width.to_bytes(2, “little”) +

height.to_bytes(2, “little”) +

color.to_bytes(4, “big”),

)

Example 5 : Python code to display a blue rectangle at (50, 100)

Drawing spinners
Spinners are images that rotate creating an animation. They can be useful as

progress indicators.

Displaying a spinner is achieved by first sending the name of the image that we
want to use on the Data Characteristic. Currently, there is only one spinner predefined on
the glasses, which is “spinner_1.svg”, however you can use any SVG image for that
matter. Then we send the following control instruction on the Control Characteristic to
display the spinner:

1 byte 2 bytes 2 bytes 4 bytes 1 byte 1 byte 1 byte

0x0D Horizontal
position

Vertical
position

Color Scale Animation
timing
function

Spins per
second

● Positions and color are expressed in the same way as for text.

● Scale is encoded the same way as for icons.

● Animation timing function is the ID of the animation curve that you want to use.
Possible values are:

○ 0 = linear

○ 1 = ease-in

○ 2 = ease-out

● Spins per second:

○ Minimum is 0, encoded as 0

○ Maximum is 25.5, encoded as 255

11

A few important notes:

● Spinners will always be drawn on top of other drawings regardless if they were
created before.

● Placing multiple spinners may break their rotation animation (a known bug).

● They may not display properly (having screen tearing) if they are positioned at the
top half of the screen, or if they are too big, so prefer putting them on the bottom
half and making them smaller.

Example 6 shows how to draw a spinner:

async with BleakClient(MAC_ADDRESS) as client:

x = 50

y = 100

color = 0x0000ffff

scale = 2.5

animation_timing_function = 2 # ease-out

spins_per_second = 3.7

Write spinner filename on Data Characteristic

await client.write_gatt_char(

data_characteristic,

bytes(“spinner_1.svg”, 'utf-8'),

)

Send control

await client.write_gatt_char(

control_characteristic,

bytearray([0x0D]) +

x.to_bytes(2, 'little', signed=True) +

y.to_bytes(2, 'little', signed=True) +

color.to_bytes(4, “big”) +

encode_scale(scale) + # the same function as for icon drawings

animation_timing_function.to_bytes(1, “little”),

int(spins_per_second * 10).to_bytes(1, “little”)

)

Example 6 : Python code to display a blue spinner at (50, 100)

Set contrast and brightness
The default contrast and brightness settings should be good enough, but they can

also be changed. The control code is 0x06 for contrast, and 0x07 for brightness. Both
commands must be given 1 byte, the amount of contrast or brightness. 0 is the minimum,
255 is the maximum.

Example 7 shows how to change the contrast and brightness:

12

async with BleakClient(MAC_ADDRESS) as client:

Set contrast to 50%.

await client.write_gatt_char(

control_characteristic,

bytearray([0x06, 128]),

)

Set brightness to 100%.

await client.write_gatt_char(

control_characteristic,

bytearray([0x07, 255]),

)

Example 7 : Python code to change contrast and brightness.

Lock screen orientation
The screen display is automatically oriented in the correct direction, regardless of

whether the user uses the smart glasses with the left or right eye. If we want the screen
to keep its orientation, we must send an instruction on the Control Characteristic. This
instruction is composed of 2 bytes, the control code 0x02 and a boolean indicating
whether the orientation must be locked or not.

Example 8 shows how to lock and unlock rotation.

async with BleakClient(MAC_ADDRESS) as client:

Lock the screen rotation.

await client.write_gatt_char(

control_characteristic,

bytearray([0x0A, True]),

)

Unlock the screen rotation.

await client.write_gatt_char(

control_characteristic,

bytearray([0x0A, False]),

)

Example 8 : Python code to lock screen orientation.

Enable or disable backlight
Disabling the backlight will turn the screen off. The control code for backlight is

0x0B and the command must be given a boolean, whether you want to turn the backlight
on or off.

Example 9 shows how to change the backlight:

13

async with BleakClient(MAC_ADDRESS) as client:

Turn off the backlight.

await client.write_gatt_char(

control_characteristic,

bytearray([0x0B, False]),

)

Re-enable it.

await client.write_gatt_char(

control_characteristic,

bytearray([0x0B, True]),

)

Example 9 : Python code to change the backlight.

14

Control codes
Table 4 lists the control codes available and which can be used on the Control

Characteristic to describe an operation.

Control code Instruction

0x01 START_DISPLAY

0x02 DISPLAY_IMAGE

0x03 DISPLAY_TEXT

0x05 CLEAR_DISPLAY

0x06 SET_CONTRAST

0X07 SET_BRIGHTNESS

0x0A LOCK_SCREEN_ROTATION

0X0B ENABLE_BACKLIGHT

0x0C DISPLAY_RECTANGLE

0x0D DISPLAY_SPINNER

Table 4 : Control Characteristic control codes

15

Get Your Way

Company Description
Get Your Way (GYW) has developed aRdent, smart glasses designed to improve

the comfort, safety and efficiency of employees in businesses. Thanks to a maximum
simplification approach, aRdent is much simpler and more comfortable to use and
implement than existing smart glasses on the market. The technology used is assisted
reality (aR), a subcategory of augmented reality (AR) which makes it possible to assist
operators while maintaining their attention on the main activity they are doing.

Figure 1 : aRdent smart glasses

The product (shown in Figure 1) takes the form of an optical module to be placed in
users' peripheral field of vision to provide them with relevant information while they work.
The data displayed can be textual or visual, depending on the intended application.
aRdent comes with a Bluetooth API for quick and easy communication with other
devices such as a computer, smartphone or portable keypad. The computing power and
software functionalities can thus be deported and implemented on an external device.

Contact
For any questions, requests, or suggestions relating to the Bluetooth API of aRdent

connected glasses, do not hesitate to contact Get Your Way by email at
support@getyourway.be

16

mailto:support@getyourway.be

